To:	Mauli Childrens Hospital And Maternity Home- Aurangabad	SampleID	2400207149
	Opp Gajanan Mandir,Beside Malkapur Bank,	PatientID	10024100031
	Pudling Nagar Road, Grkheda Parisar Maharashtra	Collected on	13/11/2024
	Aurangabad - 431001	Received on	14/11/2024 16:37
	Contact: Report Of: Mrs. DR PRATIKSHA JAIN	Registered on	14/11/2024 18:22
	Pt. Contact: 7276473733	Reported on	15/11/2024 13:42
		Referred by	Dr. Archana Patil

Hemoglobinopathy Screening				
Patient Name: Mrs. DR PRATIKSHA JAIN	Sample Type: Whole Blood	EDTA		
Date of Birth/Age: 05/11/1993	Gender: FEMALE	City: Aurangabad		
Method: High Performance Liquid Chromatography (HPLC)	Blood Transfusion History: <u>No</u>			
Referral Reason or Clinical History:				

About the test

Hemoglobinopathy screening by high performance liquid chromatography is a blood test that is used for detecting quantitative and qualitative abnormalities of hemoglobin (Hb), namely, Thalassemia and Structural Hb variants (e.g. HbS) respectively. The test helps identify individuals with these disorders so that they can receive timely and appropriate treatment and care. Antenatal diagnosis of these disorders allows measures to reduce the chances of the birth of an affected baby. It is also possible to screeen the newborns for hemoglobinopathies using this approach, thereby decreasing the mortality & morbidity associated with conditions like Sickle cell disorder.

Test findings					
Hb Fraction	Observed Value (%)	Expected Value (%)			
HbF	0.3%	<2%			
P2*	3.5%	<4.6%			
HbAO	87.1%	85 - 95%			
HbA2/HbE	2.9%	1.8 - 3.5%			
HbD	Absent	Absent			
HbS	Absent	Absent			

Interpretation

Chromatogram shows normal hemoglobin pattern. Hemoglobin and RBC parameters are normal.

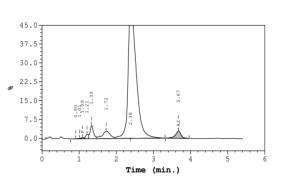
Beele

Verified by **Mr. Pradip Kadam** Incharge Biochemistry

Jurchne .. Dr.Suresh Bhanushali MD (Path), Consultant Pathologist

Patient Name: Mrs. DR PRATIKSHA JAIN

Sample ID: 2400207149


Patient Data		Analysis Data		
Sample ID:	2400207149	Analysis Performed:	11/14/2024	22:38:16
Patient ID:		Injection Number:	9124	
Name:		Run Number:	596	
Physician:		Rack ID:	0004	
Sex:		Tube Number:	10	
DOB:		Report Generated:	11/14/2024	22:46:04
Comments:		Operator ID:		
	Calibrated	Detention	Deeh	

Peak Name	Area %	Area %	Time (min)	Area
P1		0.0	0.90	660
Unknown		0.1	1.01	2258
F	0.3		1.09	7868
Unknown		1.0	1.21	27768
P2		3.5	1.33	92456
P3		4.7	1.72	123713
Ao		87.1	2.38	2305484
A2	2.9		3.67	86314

Total Area: 2,646,521

A2 Concentration = 2.9 %

Analysis comments:

F Concentration = 0.3 ŝ A2 Concentration = 2.9 ۶

Important Blood Indices (from CBC Analysis)

HPLC Findings

Parameters	Result	Reference Range	Units
Hemoglobin (Hb)	12.88	12 - 15	g/dL
RBC Count	3.96	3.8 - 4.8	x 10 ⁶ /µL
Hematocrit	39.70	36 - 46	%
Mean Corpuscular Volume (MCV)	100.20	83 - 101	fL
Mean Corpuscular Hb (MCH)	32.50 🛕	27 - 32	pg
Mean Corpuscular Hb Conc. (MCHC)	32.40	31.5 - 34.5	g/dL
RBC Distribution Width (RDW) (CV)	13.30	11.6 - 14	%
RBC Distribution Width (RDW) (SD)	45.50	39 - 46	fL

Notes:

- 1. Recent blood transfusions and iron deficiency can interfere with the results, repeat testing is recommended three months after the last blood transfusion. In case of iron deficiency, it is recommended to evaluate the result post-correction of iron deficiency.
- 2. Megaloblastic anemia can cause elevated HbA2 levels. A repeat assay is recommended after correction of VitB12 deficiency.
- Mild to moderately elevated fetal hemoglobin (HbF) values are observed during pregnancy, hypoxia, chronic kidney disease, use of certain 3. drugs,myelodysplastic syndromes (MDS), aplastic anemia and conditions of stress hemopoiesis.
- Cases with borderline HbA2 levels (3.1-3.9%) could represent Silent Beta-thalassemia trait, or co-existent iron deficiency or Alpha-thalassemia 4 in a case of Beta-thalassemia trait. They need to be investigated further by appropriate tests.
- 5. Confirmatory molecular tests for Beta-thalassemia traits and abnormal hemoglobin disorders (e.g. HbS, HbE, and HbD), followed by subsequent prenatal diagnosis (If required) are available at our centre.
- The mentioned P2 value from BioRad Variant-II HPLC system is equivalent of HbA1c value in BioRad D10 system 6.

Disclaimers:

- 1. The Hb-HPLC is a screening test that detects Beta-thalassemia and other hemoglobin variants. It does not identify Alpha-thalassemia and Silent Beta-thal-assemia carriers. DNA analysis is recommended to rule out Alpha-thalassemia and Silent Beta-thalassemia carriers.
- The result must be interpreted in conjunction with the complete blood counts (CBC), VitB12 and iron profile of the individual. 2.
- Each sample received at Lilac Insights' processing centre is handled with the utmost sensitivity and care. All samples received on Sundays and 3. National holidays are stored as per specific guidelines for the respective specimens and processed on the next day.
- P2 peak in Bio Rad's Variant II HPLC platform represents glycated hemoglobin. It is elevated in uncontrolled diabetes. 4

Bede

Verified by Mr. Pradip Kadam Incharge Biochemistry

Swehn.

Dr.Suresh Bhanushali MD (Path), Consultant Pathologist

Page 2 of 2