

SampleID	2300138146
PatientID	1002358597
Collected on	22/07/2023
Received on	24/07/2023 16:39
Registered on	24/07/2023 16:26
Reported on	26/07/2023 09:33
Referred by	DR.ASHOK NARWADE
	Patient ID Collected on Received on Registered on Reported on

Hemoglobinopathy Screening			
Patient Name: Mrs. GITANJALI KARANDE	Sample Type: <u>Whole Blood I</u>	EDTA	
Date of Birth/Age: 02/05/2002	Gender: FEMALE	City: <u>AHMEDNAGAR</u>	
Method: High Performance Liquid Chromatography (HPLC)	Blood Transfusion History:	No	
Referral Reason or Clinical History:			

About the test

Hemoglobinopathy screening by high performance liquid chromatography is a blood test that is used for detecting quantitative and qualitative abnormalities of hemoglobin (Hb), namely, Thalassemia and Structural Hb variants (e.g. HbS) respectively. The test helps identify individuals with these disorders so that they can receive timely and appropriate treatment and care. Antenatal diagnosis of these disorders allows measures to reduce the chances of the birth of an affected baby. It is also possible to screeen the newborns for hemoglobinopathies using this approach, thereby decreasing the mortality & morbidity associated with conditions like Sickle cell disorder.

Test findings				
Hb Fraction	Observed Value (%) Expected Value (%			
HbF	0.4%	<2%		
P2*	3.2%	<4.6%		
НЬАО	88.0%	85 - 95%		
HbA2/HbE	3.3%	1.8 - 3.5%		
HbD	Absent	Absent		
HbS	Absent	Absent		

*The mentioned P2 value from BioRad Variant-II HPLC system is equivalent of HbA1c value in BioRad D10 system

Interpretation

Chromatogram shows HbA2 on the higher side of normal 3.3%) (see comments below) Hb and PCV are reduced. Red cell indices are normocytic normochromic.

Suggestions

An HbA2 of <3.5% is considered normal and a value of >4% is considered highly suggestive of B-Thal trait. A recent study (Colaco S et al. Nature Portfolio Scientific Reports (2022) 12:5414) has however, shown that a significant number of patients (87%) with HbA2 between 3.0 to 3.9% are silent carriers of B-Thalassemia and may remain undiagnosed if one follows the cut off of 4% for diagnosis. It is therefore, recommended that spouses of such patients get screened for B-Thalassemia by HPLC or an equivalent technology, and if found to have an HbA2 between 3 to 3.9%, molecular genetic testing be performed to check for homozygosity/heterozygosity for B-Thalassemia in the fetus.

Beele

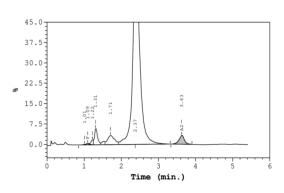
Verified by **Mr. Pradip Kadam** Incharge Biochemistry

Dr. A. Dasgupta MD, PhD, Consultant Hematopathologist Page 1 of 2

Lilac Insights Pvt. Ltd. 301-302, Building A-1, Rupa Solitaire Millennium Business Park, MIDC Industrial Area, Sector-1, Navi Mumbai, Maharashtra 400710. Phone: +91 22 41841438; Website: www.lilacinsights.com; For queries or complaints, please email: info@lilacinsights.com | CIN - U85191MH2011PTC217513

Patient Name : Mrs. GITANJALI KARANDE

Sample ID: 2300138146


HPLC Findings

31

32

Patient Data 23000 Sample ID: 23000 Patient ID: Name: Physician: Sex: DOB: Comments:	138146	Inject Run Nu Rack I Tube N	is Performed: ion Number: mber: D: umber: Generated:	07/24/2023 4194 333 0002 4 07/26/2023	
Peak Name	Calibrated Area %	Area %	Retention Time (min)	Peak Area	
Unknown		0.1	1.01	1469	

reak mane	mea o	meet o	TTUC (mitit)	meca
Unknown		0.1	1.01	1469
F	0.4		1.09	6605
Unknown		0.8	1.22	14919
P2		3.2	1.31	57312
P 3		4.3	1.71	77316
Ao		88.0	2.37	1574442
A2	3.3		3.63	56686

Analysis comments:

F Concentration = 0.4 % A2 Concentration = 3.3 %

Important Blood Indices (from CBC Analysis)

Total Area: 1,788,748

Parameters	Result	Reference Range	Units
Hemoglobin (Hb)	11.07 🛕	12 - 15	g/dL
RBC Count	4.06	3.8 - 4.8	x 10 ⁶ /µL
Hematocrit	35.30 🛕	36 - 46	%
Mean Corpuscular Volume (MCV)	87.00	83 - 101	fL
Mean Corpuscular Hb (MCH)	27.30	27 - 32	pg
Mean Corpuscular Hb Conc. (MCHC)	31.40 🔺	31.5 - 34.5	g/dL
RBC Distribution Width (RDW) (CV)	15.40 🛕	11.6 - 14	%
RBC Distribution Width (RDW) (SD)	47.70 🛕	39 - 46	fL

Notes:

- 1. Recent blood transfusions and iron deficiency can interfere with the results, repeat testing is recommended three months after the last blood transfusion. In case of iron deficiency, it is recommended to evaluate the result post-correction of iron deficiency.
- 2. Megaloblastic anemia can cause elevated HbA2 levels. A repeat assay is recommended after correction of VitB12 deficiency.
- 3. Mild to moderately elevated fetal hemoglobin (HbF) values are observed during pregnancy, hypoxia, chronic kidney disease, use of certain drugs, myelodysplastic syndromes (MDS), aplastic anemia and conditions of stress hemopoiesis.
- 4. Cases with borderline HbA2 levels (3.1-3.9%) could represent Silent Beta-thalassemia trait, or co-existent iron deficiency or Alpha-thalassemia in a case of Beta-thalassemia trait. They need to be investigated further by appropriate tests.
- 5. Confirmatory molecular tests for Beta-thalassemia traits and abnormal hemoglobin disorders (e.g. HbS, HbE, and HbD), followed by subsequent prenatal diagnosis (If required) are available at our centre.
- 6. The mentioned P2 value from BioRad Variant-II HPLC system is equivalent of HbA1c value in BioRad D10 system

Disclaimers:

- 1. The Hb-HPLC is a screening test that detects Beta-thalassemia and other hemoglobin variants. It does not identify Alpha-thalassemia and Silent Beta-thal-assemia carriers. DNA analysis is recommended to rule out Alpha-thalassemia and Silent Beta-thalassemia carriers.
- 2. The result must be interpreted in conjunction with the complete blood counts (CBC), VitB12 and iron profile of the individual.
- 3. Each sample received at Lilac Insights' processing centre is handled with the utmost sensitivity and care. All samples received on Sundays and National holidays are stored as per specific guidelines for the respective specimens and processed on the next day.
- 4. P2 peak in Bio Rad's Variant II HPLC platform represents glycated hemoglobin. It is elevated in uncontrolled diabetes.

Beele

Verified by **Mr. Pradip Kadam** Incharge Biochemistry

Nas Empl

Dr. A. Dasgupta MD, PhD, Consultant Hematopathologist

Page 2 of 2

Lilac Insights Pvt. Ltd. 301-302, Building A-1, Rupa Solitaire Millennium Business Park, MIDC Industrial Area, Sector-1, Navi Mumbai, Maharashtra 400710. Phone: +91 22 41841438; Website: www.lilacinsights.com; For queries or complaints, please email: info@lilacinsights.com | CIN - U85191MH2011PTC217513